宝马娱乐在线城-宝马娱乐在线

来自 世界互联 2019-10-01 17:12 的文章
当前位置: 宝马娱乐在线城 > 世界互联 > 正文

用机器学习怎样鉴别不可描述的网站

一,哪些信息是网站关键的语料信息

2.3.1 贝叶斯公式推导

朴素贝叶斯文本分类的思想:它认为词袋中的两两词之间是相互独立的,即一个对象的特征向量中的每个维度都是相互独立的。
朴素贝叶斯分类的定义:
(1),设x={a1,a2,^am}为一个待分类项,而每个a为x的一个特征属性
(2),有类别集合C={y1,y2,……yn}.
(3),计算P(y1|x),P(y2|x),……,P(yn|x)
(4),如果P(yk|x)=max{P1,P2,……,Pn},则x属于yk

-- 计算第(3)步的各个条件概率:
(1)找到一个已知分类的待分类集合,即训练集
(2)统计得到在各个类别下的各个特征属性的条件概率估计,即:
P(a1|y1),P(a2|y2),……,P(am|y1)
P(a1|y2),P(a2|y2),……,P(am|y2)
……
(3),如果各个特征属性是条件独立的,根据贝叶斯定理有:
P(yi|x) = P(x|yi)*P(yi)/P(x)
分母对于所有类别为常数,故只需将分子最大化即可

故,贝叶斯分类的流程为:
第一阶段 : 训练数据生成训练样本集:TF-IDF
第二阶段: 对每个类别计算P(yi)
第三阶段:对每个特征属性计算所有划分的条件概率
第四阶段:对每个类别计算P(x|yi)P(yi)
第五阶段:以P(x|yi)P(yi)的最大项作为x的所属类别

图片 1

2.2.5 权重策略:TF-IDF方法

1,词向量空间模型:将文本中的词转换为数字,整个文本集转换为维度相等的词向量矩阵(简单理解,抽取出不重复的每个词,以词出现的次数表示文本)
2,归一化:指以概率的形式表示,例如:0,1/5,0,0,1/5,2/5,0,0,也称为:词频TF(仅针对该文档自身)
3,词条的文档频率IDF: 针对所有文档的词频

互联网中蕴含着海量的内容信息,基于这些信息的挖掘始终是诸多领域的研究热点。当然不同的领域需要的信息并不一致,有的研究需要的是文字信息,有的研究需要的是图片信息,有的研究需要的是音频信息,有的研究需要的是视频信息。

2.2.2 中文分词介绍

1,中文分词:将一个汉字序列(句子)切分成一个单独的词(中文自然语言处理的核心问题)
2,中文分词的算法:基于概率图模型的条件随机场(CRF)
3,分词后文本的结构化表示:词向量空间模型,主题模型,依存句法的树表示,RDF的图表示
4,本项目的分词系统:采用jieba分词
5, jieba分词支持的分词模式:默认切分,全切分,搜索引擎切分
6,jieba分词的代码见文件:对未分词语料库进行分词并持久化对象到一个dat文件(创建分词后的语料文件:train_corpus_seg)

#coding=utf-8

import sys
import os
import jieba

reload(sys)
sys.setdefaultencoding('utf-8')    # 配置UTF-8输出环境

#定义两个函数,用于读取和保存文件

def savefile(savpath,content):   # 定义一个用于保存文件的函数
    fp = open(savepath,"wb")
    fp.write(content)
    fp.close()

def readfile(path):    # 定义一个用于读取文件的函数
    fp = open(path,"rb")
    content = fp.read()
    fp.close()
    return content    #函数返回读取的内容


# 以下是整个语料库的分词主程序

corpus_path = "train_corpus_small/"   # 未分词分类语料库路径
seg_path = "train_corpus_seg/"  # 分词后分类语料库路径

catelist = os.listdir(corpus_path) #os.listdir获取cor_path下的所有子目录

for mydir in catelist:       # 遍历所有子目录
    class_path = corpus_path+mydir+"/"  #构造分类子目录的路径
    seg_dir = seg_path+mydir+"/"  #构造分词后的语料分类目录

    if not os.path.exists(seg_dir):  # 是否存在目录,如果没有则创建
        os.makedirs(seg_dir)

    file_list = os.listdir(class_path)  # 获取目录下的所有文件

    for file_path in file_list:      # 遍历目录下的所有文件
        fullname = class_path+file_path    #文件路径
        content = readfile(full.name).strip()   # 读取文件,strip()用于移除字符串头尾指定的字符,即移除头尾的空格
        content = content.replace("rn","").strip()  # 将空格和换行替代为无
        content_seg = jieba.cut(content)    # 利用jieba分词

        savefile(seg_dir+file_path," ".join(content_seg))   # 调用函数保存文件,保存路径为:seg_dir+file_path,用空格将分词后的词连接起来

print "中文语料分词结束"


#############################################################################

# 为了便于后续的向量空间模型的生成,分词后的文本还要转换为文本向量信息并对象化
# 引入Scikit-Learn的Bunch类

from sklearn.datasets.base import Bunch
bunch = Bunch{target_name=[],label=[],filename=[],contents=[]}

# Bunch类提供键值对的对象形式
#target_name:所有分类集名称列表
#label:每个文件的分类标签列表
#filename:文件路径
#contents:分词后的文件词向量形式

wordbag_path = "train_word_bad/train_set.dat"  #分词语料Bunch对象持久化文件路径
seg_path = "train_corpus_seg/"   #分词后分类语料库路径(同上)

catelist = os.listdir(seg_path)  # 获取分词后语料库的所有子目录(子目录名是类别名)
bunch.target_name.extend(catelist)   # 将所有类别信息保存到Bunch对象

for mydir in catelist:     # 遍历所有子目录
    class_path = seg_path+mydir+"/" # 构造子目录路径
    file_list = os.listdir(class_path)    # 获取子目录内的所有文件
    for file_path in file_list:     # 遍历目录内所有文件
        fullname = class_path+file_path    # 构造文件路径
        bunch.label.append(mydir)      # 保存当前文件的分类标签(mydir为子目录即类别名)
        bunch.filenames.append(fullname)  # 保存当前文件的文件路径(full_name为文件路径)
        bunch.contents.append(readfile(fullname).strip())  # 保存文件词向量(调用readfile函数读取文件内容)

file_obj = open(wordbad_path,"wb")  # 打开前面构造的持久化文件的路径,准备写入
pickle.dump(bunch,file_obj)   # pickle模块持久化信息,bunch是要持久化的文件,已添加了信息。file_obj是路径
file_obj.close()
# 之所以要持久化,类似游戏中途存档,分词后,划分一个阶段,将分词好的文件存档,后面再运行就不用重复分词了

print "构建文本对象结束!!"      

# 持久化后生成一个train_set.dat文件,保存着所有训练集文件的所有分类信息
# 保存着每个文件的文件名,文件所属分类和词向量

keywords(0.8912319644839067,0.8890122086570478,0.8901220865704772,0.8912319644839067,0.8856825749167592)

2.2.1 文本预处理:

文本处理的核心任务:将非结构化的文本转换为结构化的形式,即向量空间模型

文本处理之前需要对不同类型的文本进行预处理

当然本文所讨论的不可描述网站的识别的应用场景还是较为有限的,如果是企业或者教育网的出口处,该方法就可能没法起作用。对于以 HTTP 协议传输的网站来说,能够获取明文,方法依然有效。

1,模块分类:

1)分类和回归算法:广义线性模型,支持向量机,kNN,朴素贝叶斯,决策树,特征选择
2)聚类算法:K-means
3)维度约简:PCA
4)模型选择:交叉验证
5)数据预处理:标准化,去除均值率和方差缩放,正规化,二值化,编码分类特征,缺失值的插补

但是对本文所述场景来说 deion 的权重大于 keywords;keywords 的权重大于 title。也就是说当网页没有 deion 时候,考虑使用 keywords 作为语料输入;当网页没有 deion,keywords 时候,考虑使用 title 作为语料输入。

2.2.7 分类结果评估

机器学习领域的算法评估的指标:
(1)召回率(查全率):检索出的相关文档数和文档库中所有的相关文档数的比率,是衡量检索系统的查全率
召回率=系统检索到的相关文件/系统所有相关的文档总数
(2)准确率(精度):检索出的相关文档数与检索出的文档总数的比率
准确率=系统检索到的相关文件/系统所有检索到的文件总数
(3)Fp-Measure
Fp=(p2+1)PR/(p2P+R),P是准确率,R是召回率
p=1时,就是F1-Measure
文本分类项目的分类评估结果评估:代码见文件

import numpy as np
from sklearn import metrics

def metrics_result(actual,predict):
    print '精度:{0:3f}'.format(metrics.precision_score(actual,predict))
    print '召回:{0:0.3f}'.format(metrics.recall_score(actual,predict))
    print 'f1-score:{0:3f}'.format(metrics.f1_score(actual,predict))

metrics_result(test_set.label,predicted)

#输出形式如
#精度:0.991
#召回:0.990
#f1-score:0.990

当在搜索框中输入关键词时候,会去和其存储网页进行匹配,将符合匹配的网页按照个网页的权重分页进行显示。当然网页的权重包含很多方面,例如广告付费类权重就非常的高,一般会在靠前的位置显示。对于一般的网站,其权重包括网页的点击次数,以及和关键词匹配的程度等来决定显示的前后顺序。

2.3.2 朴素贝叶斯算法实现

样例:使用简单的英文语料作为数据集,代码见文件

# 编写导入的数据
def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him','my'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
                # 使用简单的英语语料作为数据集,有6个文本

    classVec = [0,1,0,1,0,1]     # 文本对应的类别

    return postingList,classVec  # postingList是训练集文本,classVec是每个文本对应的分类

###########################################################################

# 编写贝叶斯算法(sklearn已有贝叶斯算法包,现在是理解贝叶斯算法原理后,自己编写算法代码)


#(1)编写一个贝叶斯算法类,并创建默认的构造方法

class NBayes(object):     # 创建贝叶斯算法类

    def __init__(self):       #初始化类的属性
        self.vocabulary = []  #词典
        self.idf = 0          #词典的IDF权值向量
        self.tf = 0           #训练集的权值矩阵
        self.tdm = 0          #P(x|yi)
        self.Pcates = {}      #P(yi)是一个类别词典P(yi)的值:{类别1:概率,类别2:概率}
        self.labels = []      #对应每个文本的分类,是一个外部导入的列表
        self.doclength = 0    #训练集文本数
        self.vocablen = 0     #词典词长
        self.testset = 0      #测试集 


#(2)导入和训练数据集,生成算法必需的参数和数据结构

def train_set(self,trainset,classVec):  # 传入训练集文本和对应的分类类别

    self.cate_prob(classVec)    # 计算每个分类在数据集中的概率P(yi),cate_prob函数在下面创建
    self.doclength = len(trainset) # 用len函数计算训练集trainset的文本数,赋给类的doclength属性

    tempset = set()  # 使用set(),初始化一个空的集合:是一个无序不重复元素集
    [tempset.add(word) for doc in trainset for word in doc] #生成词典  ,add是往集合添加元素
    # doc遍历trainset,word遍历doc,再将word添加进tempset集合里
    # 训练集文本trainset实际上是一个矩阵,doc遍历取得向量,即单个文本,word遍历取得文本内的词,再添加进集合
    self.vocabulary = list(tempset) # 将tempset转换为列表list,添加进类的vocabulary属性,即词典
    self.vocablen = len(self.vocabulary) #len函数计算词典的长度(这里的词典实际上是一个不重复的词袋空间)

    self.calc_wordfreq(trainset)  # 计算数据集的词频(word frequency):tf和idf ,调用了calc_wordfred函数,传入训练集trainset
    self.build_tdm()  # 按分类累计向量空间的每维值P(x|yi),调用了build_tdm函数


# (3) cate_prob函数:计算数据集中 每个分类的概率P(yi)

def cate_prob(self,classVec):  # 该函数用于计算每个类别在数据集中的概率,被上面的train_set函数调用
    self.labels = classVec     # classVec是导入的训练集文本对应的类别
    labeltemps = set(self.labels)  # 获取全部分类,set()集合:无序不重复元素集,本例就两类:{0,1}
    for labeltemp in labeltemps:    # 遍历所有分类{0,1}
        self.labels.count(labeltemp)  #统计self.labels里类别的个数:类别0的个数和类别1的个数
        self.Pcates[labeltemp] = float(self.labels.count(labeltemp))/float(len(self.labels))
        # 每种类别个数/类别类别总数:6,在Pcates字典里,创建键值对{'0':概率,'1':概率}


# (4) calc_wordfred函数:生成普通的词频向量  TF-IDF

def calc_wordfred(self,trainset):   # 用于计算词袋(词典)内每个词的词频,被上面的train_set函数调用

    self.idf = np.zeros([1,self.vocablen]) # 全0矩阵,矩阵大小:1x词典长度,self.vocablen是上面计算出的词典长度(词袋长)
    self.tf = np.zeros([self.doclength,self.vocablen]) #构造全0矩阵:训练集文件数x词典数,doclength是上面计算出的训练集文本数:6,vocablen是计算出的词典长度 
    #构造训练集的IDF和TF向量模型,IDF是一行,TF是文档数,行,初始化全为0

    for indx in xrange(self.doclength):  # xrange与range用法相同,结果不同,生成的不是列表,而是生成器,适合数字序列较大时,不用一开始就开辟内存空间
    # indx遍历训练集文本数列表,indx取得的是数
        for word in trainset[indx]: #word 遍历trainset中的每一文本的词,##word取得的是词
            self.tf[indx,self.vocabulary.index(word)] +=1    # 权值矩阵的第index行,第k列,加1
            # 词典列表的index方法,返回word的索引位置k
            #  生成了TF词频矩阵

        for signleword in set(trainset[indx]):  # signleword遍历训练集文本里每一文本构成的集合(取得每一文本不重复的词),
            self.idf[0,self.vocabulary.index(signleword)] +=1  # idf权值矩阵的第k个加1
            #index返回每一文本不重复词的索引位置
            #生成IDF矩阵           
## 实际上本函数生成的是训练集的TF矩阵和词袋的IDF矩阵(绝对数形式,非频率)        


# (5) build_tdm函数:按分类累计计算向量空间的每维值P(x|yi),已知类别为yi,求是x的概率

def build_tdm(self):   #计算P(x|yi),被train_set函数调用

    self.tdm = np.zeros([len(self.Pcates),self.vocablen])  #构造全0矩阵,大小:类别词典长度2(在cate_prob函数里)x 词典长度(train_set函数里)
    sumlist = np.zeros([len(self.Pcates),1])  # 构造全0矩阵:大小:类别词典长度x1
    #统计每个分类的总值,sumlist两行一列

    for indx in xrange(self.doclength):    #indx遍历训练集文本数生成的列表[0,1,2,3,4,5],取得的是数字 

        #将同一类别的词向量空间值tf加总
        #即:tf权值矩阵值,六行,分为两类,同类相加,变为两行
        self.tdm[self.labels[indx]] += self.tf[indx]   # labels[indx]是训练集文本对应类别里的第indx个(在cate_prob函数里)即[0,1,0,1,0,1]里的第indx个,对应tdm的第某行
        # tf[indx]是tf权值矩阵的第indx行(在calc_wordfred函数里)

        #统计每个分类的总值--是一个标量
        sumlist[self.labels[indx]] = np.sum(self.tdm[self.labels[indx]]) 
        #利用np.sum计算tdm矩阵的和,赋值给sumlist矩阵的?
        # sumlist得到的结果:0:总值
                            #1:总值

    self.tdm = self.tdm/sumlist   # tdm即:P(x|yi)=P(xyi)/P(yi)
    #得到的结果tdm是一个两行,词典长列的矩阵,表示着P(a1|yi),P(a2|yi)……
  #tdm是一个向量,sumlist是一个值


(3)-(5)函数都被train_set函数调用  
#####################################################################################



# (6) map2vocab函数:将测试集映射到当前字典

def map2vocab(self,testdata):  # 传入测试集数据 testdata
    self.testset = np.zeros([1,self.vocablen])  #构造全0矩阵,大小:1*词典长度
    for word in testdata:    # word遍历测试集(某个文本)
        self.testset[0,self.vocabulary.index(word)] +=1 # testset矩阵的第k个加1
        # vocabulary.index(word)返回字典的与word匹配的词的索引位置
# 本函数是将测试集文档转换为以频数表示的[   ]矩阵   


# (7) predict函数:预测分类结果,输出预测的分类类别

def predict(self,testset):    #传入测试集数据

    if np.shape(testset)[1] != self.vocablen: #如果测试集长度与词典长度不相等,则退出程序
        print "输出错误"
        exit(0)

    predvalue = 0  #初始化类别概率
    predclass = ""  # 初始化类别名称

    for tdm_vect,keyclass in zip(self.tdm,self.Pcates): 
       #P(x|yi) P(yi)    #      变量tdm,计算最大分类值
    #zip函数将tdm和Pcates打包成元组,并返回元组组成的列表。
    #tdm是P(x|yi),Pacates是类别词典P(yi)

        temp = np.sum(testset*tdm_vect*self.Pacate[keyclass])  #测试集testset乘tdm_vect乘Pcates[keyclass]  ,并求和
        #测试集向量*P
        if temp > predvalue:  
            predvalue = temp
            predclass = keyclass
    return predclass   # 输出预测的类别(概率最大的类别)

#########################################################################

#算法的改进:为普通的词频向量使用TF-IDF策略

#calc_tfidf函数:以TF-IDF方式生成向量空间

def calc_tfidf(self,trainset):        # 传入训练集数据
    self.idf = np.zeros([1,self.vocablen])   #构造全0矩阵,大小:1*词典长度
    self.tf = np.zeros([self.doclength,self.vocablen])  #构造全0矩阵,大小:文本数*词典长度

    for indx in xrange(self.doclength):   #indx遍历文本数生成的列表,取得的是数字      
        for word in trainset[indx]:        #word遍历训练集的第indx个文本里的词
            self.tf[indx,self.vocabulary.index(word)]+=1  #tf矩阵的某个值加1
            #消除不同句长导致的偏差
        self.tf[indx] = self.tf[indx]/float(len(trainset[indx]))  #计算的是频率而不是频数

        for signleword in set(trainset[indx]):
            self.idf[0,self.vocabulary.index(signleword)] +=1
    self.idf = np.log(float(self.doclength)/self.idf)

    self.tf = np.multiply(self.tf,self.idf) # 矩阵与向量的点乘TFxIDF

######################################################################

#执行创建的朴素贝叶斯类,获取执行结果

#coding=utf-8

import sys
import os
from numpy import *
import numpy as np
from NBayes_lib import *

dataSet,listClasses = loadDataSet() 

 # 导入外部数据集,loadDataSet是自己创建的函数,返回值为两个,postingList是训练集文本,classVec是每个文本对应的分类
# dataset为句子的词向量
# listclass为句子所属类别 [0,1,0,1,0,1]

nb = NBayes()  #实例化 NBayes是我们创建的贝叶斯算法类
nb.train_set(dataSet,listClasses) # 训练数据集。train_set是创建的类的函数,用于训练
nb.map2vocab(dataSet[0])   # 随机选择一个测试句 #map2vocab函数将测试集映射到当前词典
print nb.predict(nb.testset)  # 输出分类结果,predict函数用于预测分类结果,输出预测的分类类别

# 最后运行程序,看似没有数据间传递,实则是在类属性中已定义好并赋值给属性

在获取一定的文本数据之后,需要对这些原始的数据进行处理,最重要的就是分词。英文分词比之中文的分词要简单不少,因为英文中词与词之间时有明显的间隔区分,例如空格和一些标点符号等。中文的话,由于词语是由一些字组成的,整体要麻烦些,而且还有不同场景下的歧义问题。当然 python 提供了诸如 jieba 等强大的分词模块,非常方便,但是总体来说英文分词还要注意以下几点:

2.4 分类算法:KNN

KNN算法:计算向量间的距离衡量相似度来进行文本分类

搜索引擎的工作原理就是首先将互联网上大部分的网页抓取下来,并按照一定的索引进行存储形成快照,每个条目的标题就是原网站 title(通常是 60 个字节左右,也就是 30 个汉字或者 60 各英文字母,当然搜索引擎也会对于 title 做一定的处理,例如去除一些无用的词),条目的描述部分通常对应原网站 deion。


  1. 将每一行单词全部转化为小写,排除大小写的干扰。因为在本文场景下大小写词语所代表的含义基本相同,不予区分
  2. 切词,依据就是空格,逗号等分隔符,将句子切分成一个个的单词。当然由于本文的语料全部来源于网页,这其中词语的分隔都会具有一些网页的属性,比如语料中会由很多特殊的符号,如 | - _ , &# 等符号,需要进行排除
  3. 排除一些停用词。所谓的停用词通常指的是英语中的冠词,副词等,经过上一步骤切分出来的单词可能会包括 an,and,another,any 等。因此需要将这些无意义词去除掉当然你也可以使用 nltk 中自带的停用词(from nltk.corpus import stopwords),但是有的时候会根据具体的应用场景,加入相应的停用词,因此自定义停用词词典可能灵活性更高一些。比如在上一步骤中会切分出“&#”等等符号,因此需要将 &# 加入到停用词中。关于停止词,我这里面使用了一个较为常用的停用词字典,同时加入了在网页中一些常见停用词。
  4. 提取词干。由于英文的特殊性,一个词会有多种状态,比如 stop,stops,stopping 的词干都是 stop,通常情况所表示的含义都是相同的,只需要 stop 一个即可。但是对于我们的二分类应用场景来说,我一开始没有做词干的提取因为不可描述网站中的 hottest 和常见网站中共的 hot 还是有点差异的。当然这一步可以根据具体的应用场景以及识别结果进行选择。
  5. 排除数字。数字在一些不可描述网站中时经常出现的,但是为了我这边还是将其排除,比如 1080 在不可描述网站和正常的网站中出现的概率都很高,表示视频的分辨率,当然这一步也是可选的。当然数字也可以加入停止词中,但是由于数字数量较多,同时比较好鉴别(isdigit() 函数鉴别即可),因此对于数字的排除单独拿出来。

2.2 文本分类项目

图片 2

文本预处理的步骤:

1,选择处理的文本的范围:整个文档或其中段落
2,建立分类文本语料库:
训练集语料:已经分好类的文本资源。(文件名:train_corpus_small)
测试集语料:待分类的文本语料(本项目的测试语料随机选自训练语料)(文件名:test_corpus)
3,文本格式转换:统一转换为纯文本格式。(注意问题:乱码)
4,检测句子边界:标记句子结束

爬虫的实现是一个很大的主题,本文篇幅有限,不在讨论,可以参考已有的一些技术博客。总体来说应对本文场景爬虫是很简单的,即发起一个 HTTP 或者 HTTPS 链接,对返回的数据进行清洗提取即可,使用 python 的一些模块几条语句就可以搞定。我在数据获取过程中使用的是 nodejs 编写的爬虫,每次同时发起 1000 个请求,4500 个站点几分钟就搞定了。由于异步请求是 nodejs 优势之一,如果在时间方面有较高要求的,可以考虑 nodejs(但是 nodejs 异步的编程和常见语言的编程差别较大,学习起来有一定的难度),如果没有建议使用 python,主要是后续的机器学习,python 是最热门的语言,包含众多的基础模块。

中文语言的文本分类技术和流程:

1)预处理:去除文本的噪声信息:HTML标签,文本格式转换
2)中文分词:使用中文分词器为文本分词,并去除停用词
3)构建词向量空间:统计文本词频,生成文本的词向量空间
4 ) 权重策略--TF-IDF方法:使用TF-IDF发现特征词,并抽取为反映文档主题的特征
5)分类器:使用算法训练分类器
6)评价分类结果:分类器的测试结果分析

如果直接使用 train_test_split 对所有语料进行切分,则有可能会使得正常语料和色情语料在训练和策测试数据中的比例不一致,为了保证结果的可靠性,使用 train_test_split 分别对于正常语料和色情语料按照 7:3 的比例进行切分。然后将每一分切分后的训练和测试数据进行合并,使用朴素贝叶斯模型对于数据进行预测,采用多项式模型,代码如下:

2.2.4 向量空间模型:文本分类的结构化方法

1,向量空间模型:将文本表示为一个向量,该向量的每个特征表示为文本中出现的词
2,停用词:文本分类前,自动过滤掉某些字或词,以节省储存空间。根据停用词表去除,表可下载。代码见文件

四,模型的训练识别以及比较;

2.2.3 Scikit-Learn库简介

既然不可描述网站能够通过该方法被识别出来,那么推测其他类型的网站应该也可以被识别。

2.1 文本挖掘和文本分类的概念

1,文本挖掘:指从大量的文本数据中抽取事先未知的,可理解的,最终可使用的知识的过程,同时运用这些知识更好的组织信息以便将来参考。
简言之,就是从非结构化的文本中寻找知识的过程
2,文本挖掘的细分领域:搜索和信息检索(IR),文本聚类,文本分类,Web挖掘,信息抽取(IE),自然语言处理(NLP),概念提取。
3,文本分类:为用户给出的每个文档找到所属的正确类别
4,文本分类的应用:文本检索,垃圾邮件过滤,网页分层目录自动生成元数据,题材检测
5,文本分类的方法:一是基于模式系统,二是分类模型


使用 python 的 jieba 模块结合上述所述的 5 个步骤,得到若干单词,相应代码为:

2.3 分类算法:朴素贝叶斯

本节主要讨论朴素贝叶斯算法的基本原理和python实现

前面所讨论的是一个二分类的问题,总体来看使用文本分类中的一些常见的方法取得了不错的效果。

本章知识点:中文分词,向量空间模型,TF-IDF方法,文本分类算法和评价指标
使用的算法:朴素的贝叶斯算法,KNN最近邻算法
python库:jieba分词,Scikit-Learning
本章目标:实现小型的文本分类系统
本章主要讲解文本分类的整体流程和相关算法

当然在分析最终识别结果的过程中,还发现起始很多的色情语料被标记成了正常语料。原因在于,正常语料的来源是 alex 排名靠前的网站。在这其中是有部分的不可描述网站的。

2.4.2 kNN算法的python实现
#coding=utf-8

#第一阶段,导入所需要的库,进行数据的初始化

import sys
import os
from numpy import *
import numpy as *
import operator
from Nbayes_lib import *

# 配置utf-8输出环境

reload(sys)
sys.setdefaultencoding('utf-8')

k=3

#第二阶段:实现夹角余弦的距离公式

def cosdist(vector1,vector2):
    return dot(vector1,vector2)/(linalg.norm(vector1)*linalg.norm(vector2)) # 夹角余弦公式;AB/|A||B|   

#第三阶段:KNN实现分类器

#KNN分类器

#测试集:testdata;训练集:trainSet;类别标签;listClasses; k:k个邻居数

def classify(testdata,trainSet,listClasses,k):
    dataSetSize=trainSet.shape[0]     #返回样本的行数,(shape返回行数和列数)
    distances=array(zeros(dataSetSize))  #构造一个全0数组,大小为;

    for indx in xrange(dataSetSize):   #计算测试集与训练集之间的距离:夹角余弦
        distances[indx]=cosdist(testdata,trainSet[indx])
        sortedDisIndicies=argsort(-distances)
        classCount={}
        for i in range(k):#获取角度最小的前k项作为参考项
            #按排序顺序返回样本集对应的类别标签
            voteIlabel=listClasses[sortedDistIndices[i]]
            #为字典classCount赋值,相同key,其value加1
            classCount[voteIlabel]=classCount.get(voteIlabel,0) +1

        #对分类字典classCount按value重新排序
        #sorted(data.iteritems(),key=operator.itemgetter[1],reverse=True)
        #classCount.iteritems();字典迭代器函数
        #key ;排序参数;operator.itemgetter(1):多级排序
        sortedClassCount=sorted(classCount.iteritem(),key=operator.itemgetter(1),reverse=True)
        return sortedClassCount[0][0]   #返回排序最高的一项

# 最后使用KNN算法实现文本分类

dataSet,listClasses=loadDataSet()
nb.NBayes()
nb.train_set(dataSet,listClasses)  #使用之前贝叶斯分类阶段的数据集及生成的TF向量进行分类

print classify(nb.tf[3],nb.tf,listClasses,k)

本文由宝马娱乐在线城发布于世界互联,转载请注明出处:用机器学习怎样鉴别不可描述的网站

关键词: